

Progressive Production Techniques for Industrial Carbon Fiber

JEC Europe, March 2017

James Fry, Applications Engineer Harper International

Introduction

Challenge: Continuously progress state-of-the-art Carbon Fiber processing to support market advancement

Agenda

- About Harper
- 1. Computational Techniques
- 2. Microwave Processing
- 3. On-Line Measurements
- Summary

About Harper

- Headquartered near Buffalo, NY
- An employee-owned company
- Onsite Technology Center
- Multi-disciplined engineering talent
 - Chemical
 - Ceramic
 - Mechanical
 - Electrical
 - Industrial
 - Process & Integration

Carbon Fiber Carbonization Process – Scales of Operation

	Scale	Size Range (Tow-Band Width)	Capacity
F	Commercial Production Line	1000 – 4200 mm	500 - 4000 ton/year
	Pilot Line	300 -1000 mm	20 - 100 ton/year
f	Microline	≤100 mm	Less than 10 ton/year
	Scientific Line	Fractional tows (<1k or less than 1,000 filaments)	Less than 1 ton/year

Courtesy of Oak Ridge National Laboratory

Courtesy of Georgia Institute of Technology

*Georgia tech has produced the highest tensile strength PAN based carbon fiber ever reported, and highest combination of strength and modulus ever reported, on their Harper Scientific Line.

http://www.news.gatech.edu/2015/07/22/innovative-method-improves-strength-and-modulus-

carbon-fibers

Advancing the State of the Art

Five Important Technology Developments in Carbon Fiber Production

- 1. Sealed, Precision Flow Oxidation Oven Systems
- 2. Closed Pipe Treatment of Exhausts, Energy Recovery, Integration
- 3. Plants Configured for Natural Gas Energy Source
- 4. Next Gen Carbonization Systems
- 5. Utilization % Increases

Harper 1800 T/yr carbonization HT system

Agenda

- About Harper
- 1. Computational Techniques
- 2. Microwave Processing
- 3. On-Line Measurements
- Summary

1. Computational Techniques

High Performance Computing for Manufacturing (HPC4Mfg)

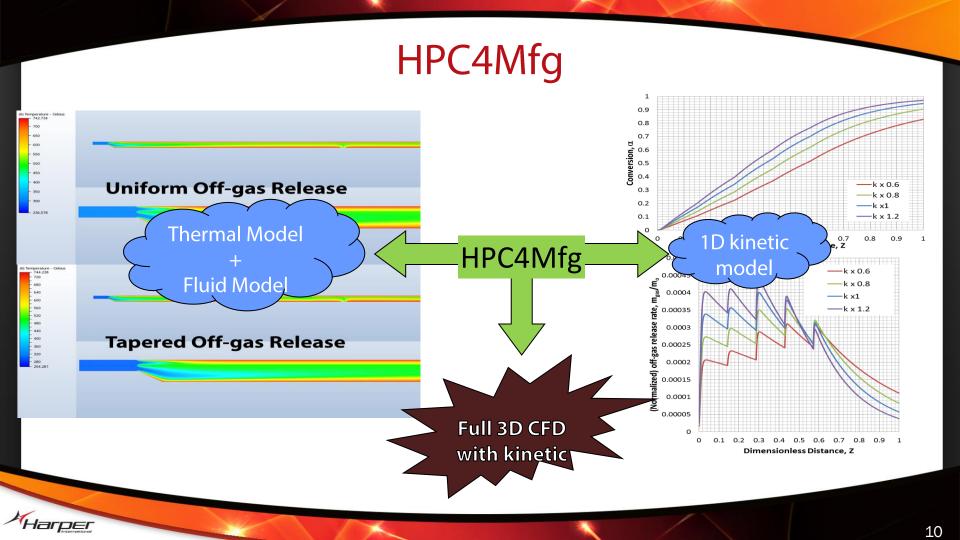
This research was supported by the High-Performance Computing for Manufacturing Project Program (HPC4Mfg), managed by the U.S. Department of Energy Advanced Manufacturing Office within the Energy Efficiency and Renewable Energy Office. It was performed using resources at Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05000R22725.

HPC4Mfg – Why?

Scaling Up Carbon Fiber Production

- Increasing furnace capacity, efficiency
 - > Increasing impact of off-gas on fiber properties.

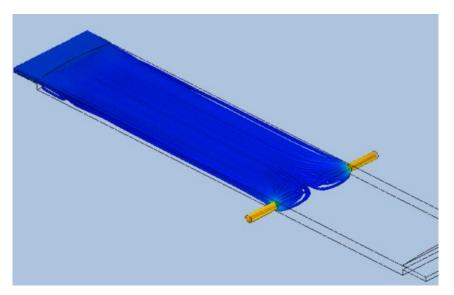
Implementation of model for uniformity of process conditions



Kinetic Model

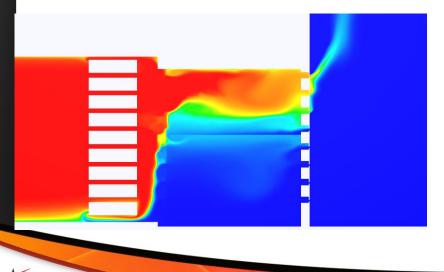
Project Approach

- Develop process kinetic and gas flow models
- Develop coupled kinetic CFD models for carbonization
- Use developed models to scale-up process and equipment

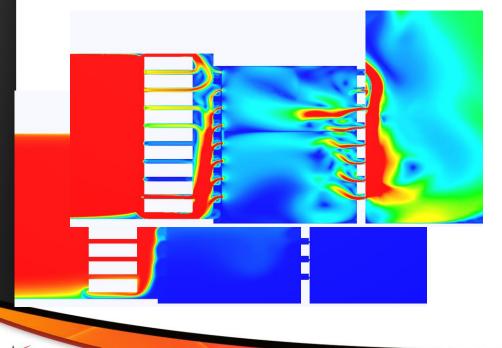


Benefits

- Improved understanding of the physical and chemical processes
- Increased ability to control the process conditions in the furnace
- Thoughtful evaluation of various scale-up approaches for
 - High capacity
 - Improved process uniformity and conversion


Off-Gas Treatment Considerations

- 2500 TONS Carbon Fiber → 2500 TONS of Off-Gas
 - Venting consistency is important!



Iterative Design

Iterative Design

Iterative Design

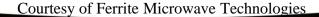
Harper

Harper

Agenda

- About Harper
- 1. Computational Techniques
- 2. Microwave Processing
- 3. On-Line Measurements
- Summary

Microwave Heating Potential for Carbon Fiber


- Direct heating of carbon fiber by microwaves
 - Change in heating modes from convection / radiation to direct heating
 - Changes the thermal profile Carbon fiber is at highest temperature
 - Changes in heating rates / energy efficiencies
- Challenge: Uniform energy distribution

Field Distribution in a Tunnel Applicator Plan view along the length

E Field [V/m]		
1.0000E+05		
7.3564E+Ø4		
5.4117E+04		
3.9811E+04		
2.9286E+Ø4		
2.1544E+04		
1.5849E+04		
1.1659E+Ø4		
8.5770E+03		
6.3096E+03		
4.6416E+Ø3		
3.4145E+Ø3		
2.5119E+Ø3		
1.8478E+Ø3		
1.3594E+Ø3		
1.0000E+03		

- Energy field Linear wave guide
- Result Non uniform processing

Hot Spots

Low Energy

Field Distribution in a Tunnel Applicator Plan view along the length

- Energy Field Circular polarizing wave guide
- Result more uniform processing
 - Even distribution of energy \rightarrow Even heating

Patented field distribution system

19

Field [V/m]

0000E+05

7.356%E+0% 5.4117E+0% 3.9811E+0%

2.9286E+04 2.1544E+04

1.5849E+P

1.8478E+03 1.3594E+03 1.8888E+03

Potential Benefits & Challenges of Microwave Heating

✓ Potential Benefits:

- Improved energy utilization
- Smaller equipment footprint
- Reduced utilities requirement
- Possible to combine multiple heat treatment stages
- Reduce oven residence times
- Potential Challenges:
- Design of vents for removing volatiles

Agenda

- About Harper
- 1. Computational Techniques
- 2. Microwave Processing
- 3. On-Line Measurements
- Summary

3. On-Line Measurements

- Continuous measurement of CF properties
- Feed back to equipment to modify properties

Selective Feedback for Intelligent Process Control

- Selecting measurable properties that influence final quality
- Selecting controls that can be manipulated to influence quality

- This is being done now manual inspection manual adjustment
 - Fuzzy fiber coming out \rightarrow Adjust system parameters based on experience
 - Linear density wrong \rightarrow Adjust system parameters based on experience

Expanding the Role of Non Destructive Evaluation

• Current – NDE at end for pass/fail of product

time with simulation

Reduce developri

rest

NDE

development

Product

arper

- What if:
 - Diagnose the material state in-line to support process decisions in order to reach speed & quality targets.
 - Characterize the material state to support simulation in order to innovate and improve upon process. speed and quality

rest

Reducescrap

NDE

Pass

Manufacture

NDE

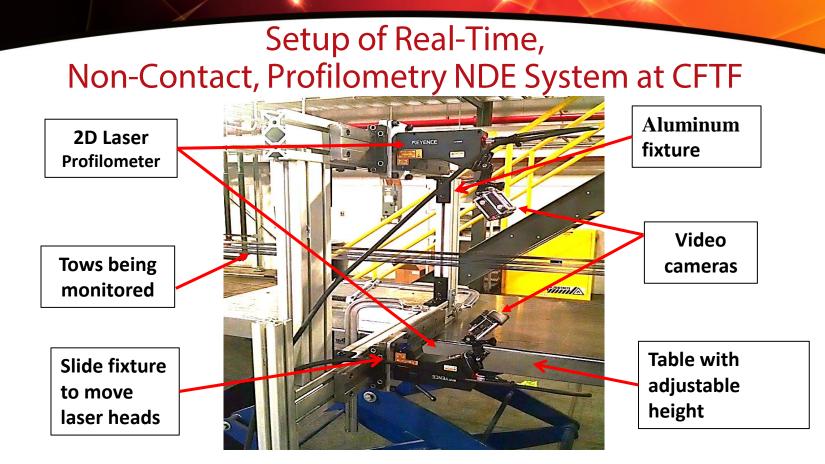
development

Process

Online Measurements

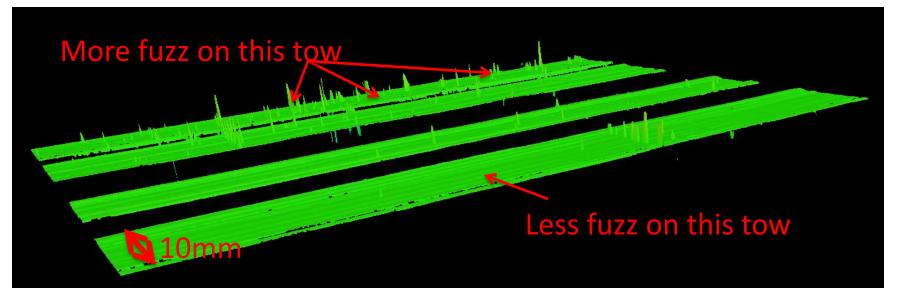
- 1. Tow Characterization (fuzz, width)
- 2. Linear Density
- 3. State of Oxidation

Courtesy: Cliff Eberle, Oak Ridge National Laboratory


1. Fuzz detection

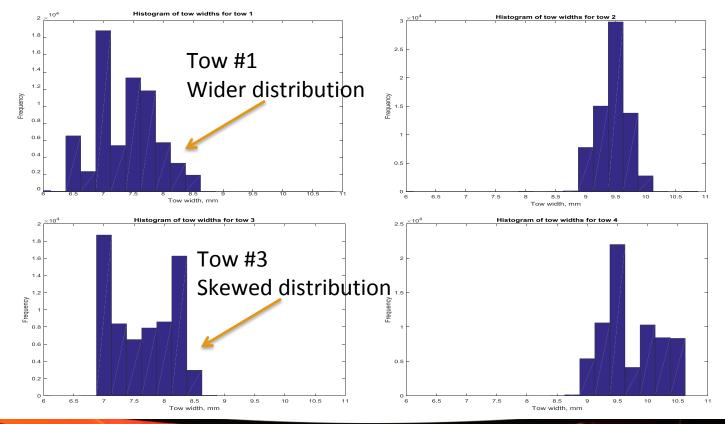
Precursor tow band exhibits fuzz which is observed with two 2D laser profilometers to render 3D tow form

12 tows total of 24k precursor (4 tows shown)



2D laser specs: Z Range: +/- 48 mm, X Beam Width: 62 mm, Sample Rate (max.) : 62500 Samples/sec. , Resolution: X: 100 μm, Z: 1 μm

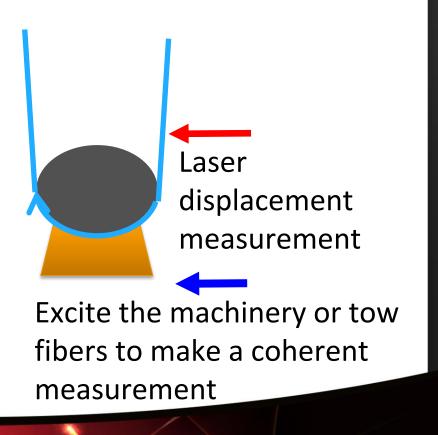
Harper


Profile along Tow for In-Line Fuzz Detection of Precursor

Combining the 2D data through time after correlating top and bottom lasers, we can create a 3D profile.

Tow Width Distributions

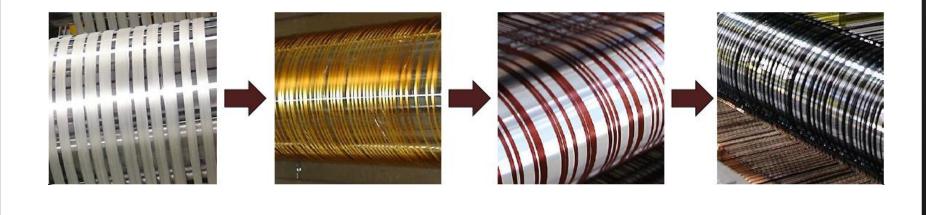
Harper


2. Measuring Linear Density

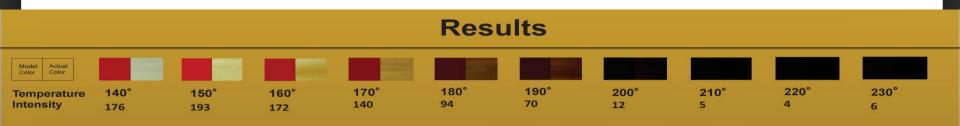
Oscillations of tow are a "fingerprint" with which to diagnose state of fiber

 $m\ddot{x} + kx = f(t)$

Presentation contains video. Contact Harper at <u>info@harperintl.com</u>

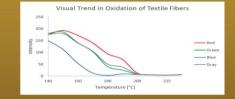

for more info.

3. Oxidation Measurement


- Oxidation process: longest and most expensive conversion step
- Detection of oxidation state \rightarrow streamline the manufacturing
- Relationships fiber's color and Oxidation State

Diagnosing Oxidation of Fiber

Red Intensity \rightarrow Oxidation State



- At 200°C and 310 minutes visual changes in the color of the fibers plateau, indicating the completion of oxidation
- The red channel shows the clearest trend

larper

Red Intensity Scale

Impact of Non Destructive Evaluation

- Feedback on fiber properties prior to final inspection
- More control and consistency of fiber quality
- Better understanding of process conditions and fiber properties

Summary

Addressing the challenge to continuously advance state-of-theart of carbon fiber processing with <u>Progressive Techniques</u>

- High Performance Computing 4 Manufacturing
 - Thermal + Fluid + Kinetic
- Microwave Techniques and potential impacts
 - Heat the fiber and nothing but the fiber
- On-line measurements and advanced control systems
 - Enhanced predictive models
 - Multi-dimensional process control

Thank you!

Spark the future.[™]

Please visit Harper at Hall 6, Booth C61

Visit us at www.harperintl.com

