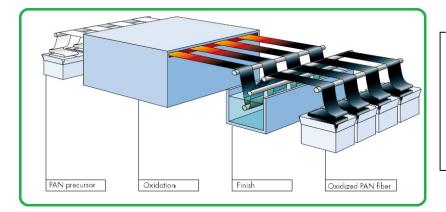
Aircraft Brake Disk Manufacture

Introduction

Aircraft braking systems have long been using carbon/carbon brake disks. Able to withstand temperature of up 1000 deg C., carbon brake discs are lighter compared to metals, enabling more payload to be carried per flight and savings in fuel consumption. Carbon/Carbon (C/C) brakes have been made from industrial grade heavy tow (320K x 1.7 dtex) precursor from the Bluestar Grimsby site for over 30 years. Aircraft programs such as the Boeing 747 and others have successfully been running with Bluestar precursor.

A Process to make C/C aircraft brakes


- 1. Precursor
- 2. Oxidation
- 3. Felting
- 4. Carbonization of oxidized felt
- 5. Stamping out and stacking of carbonized felt
- 6. Carbon vapor deposition
- 7. Machining to final shape and dimensions

1. Precursor

320K x 1.7 dtex Bluestar precursor is a common starting material for the manufacture of C/C brakes.

2. Oxidation

Typical oxidized density 1.36 to 1.38 g/cm³

The fiber finish is an antistatic textile lubricant to help further processing.

3. Felting

Using conventional textile conversion (e.g. needle punching) the oxidized PAN is converted to a fabric. These felts from Zoltek are typical of what is required:

Technical Datasheet

ZOLTEK Z

Pyron® Carbon Felts

Non-woven, Needlepunched, Oxidized / Stabilized PAN Fiber (OPAN) Felts

Description

Produced from 100% Pyron® oxidized PAN fibers, needlepunched felts are for use as thermal / acoustical insulation in aerospace, automotive or general industrial high temperature applications. Valuable as a low cost – high performance fire or spark barrier.

Material Overview	FT0500-200		FT0575-095				
	SI	US	SI	US			
Areal Weight*	500 g/m ²	15 oz/yd²	576 g/m ²	17 oz/yd²			
Width	203 cm	80 in	94 cm	37 in			
Roll Length	100 m	109 yds	45 m	50 yds			
Thickness	4.2 mm	0.17 in	6.4 mm	0.25 in			
Fiber Input	1.7 or 2.2 dTex						
Construction	Needlepunch						


*Custom weights available

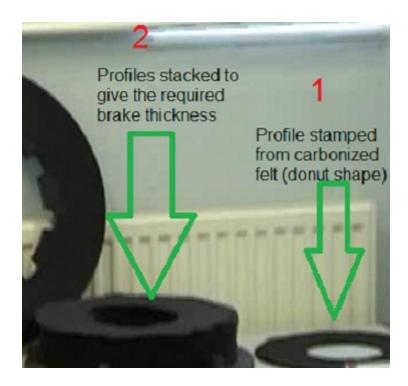
Fiber Properties		Chemical Composition (%)		Chemical Resistance	
Density	1.36 g/cc min	Carbon Content	62	Strong Acids	Good
Diameter	1.25 micron	Nitrogen	21.5	Weak Acids	Excellent
LOI	40%+	Oxygen	12	Strong Bases	Poor
Color	Black	Hydrogen	4.5	Weak Bases	Good
Resistivity	8x10 ⁸ ohms cm	Sodium	<0.1	Organic Solvents	Excellent
		Trace Metals	<0.01		

4. Carbonization of Oxidized Felt

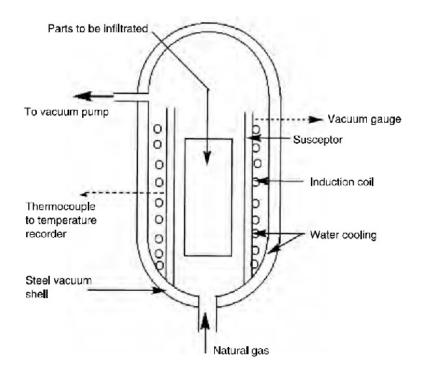
Felts are carbonized in an LT furnace under Nitrogen to around 1000 deg. C.

Oxidized acrylic fiber felt, prior to carbonization

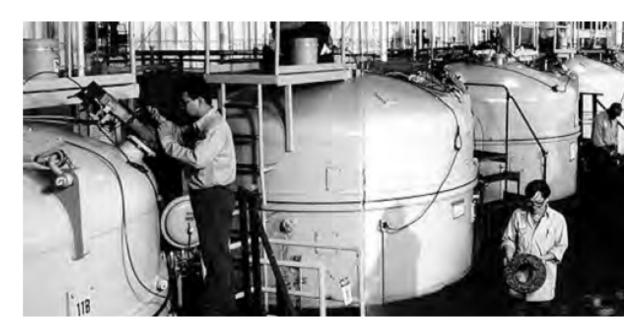
Drive nip to furnace entrance


Wind-up of felt after carbonization

Finished carbon felt rolls



5. Stamping out and Stacking of the Carbon Felt.



6. Carbon Vapor Deposition (CVD Process)

Principle of the CVD Process (for stacked donut preforms)

Actual CVD furnaces

Residence time in the CVD furnaces can be days or even weeks. During this process, carbon is deposited onto the fibers and make a solid disk.

7. Machining to final shape and dimensions

The disks are finally machined to the required dimensions before release to the final brake assembly

Vince Kelly